

Frp srvlwh#Jhsdfd#P luuruv iru#

Oljkwzhljkw#/sdfhŒdvhg#? swlfv#

Whskhq#y lqlpj#

Frughuwrqh#Jhvhdufk#Jurxs/#qf1 Gd|wrq#RK#78773

<6:165314;::

,

Gulff dylg#P rochqkdxhu Dluffrufh#Jhvhdufk#Dderudwru

4; #Dxjxw#5337

Applying Tomorrow's Materials Today

ACKNOWLEDGMENT

This presentation summarizes results of Small Business Innovation Research (SBIR) Phase I contract F33615-02-M-5027 (4/9/02 - 11/7/02) and effort to date for Phase II contract F33615-03-C-5013 funded by the Air Force Research Laboratory (AFRL) and managed by Dr. David Mollenhauer (AFRL/MLBC).

OVERVIEW

- Program Introduction
- Phase I Objectives
- Phase I Results
- Phase II Plan
- Phase II Early Results
- Phase II Enhancement
- Summary

OVERVIEW

- Program Introduction
 - Phase I Objectives
 - Phase I Results
 - Phase II Plan
 - Phase II Early Results
 - Phase II Enhancement
 - Summary

PROGRAM INTRODUCTION

Applications: Space-Based Optics

- Operational Need:
 Improve on glass & metal mirrors
 - Lighter
 - Tougher
 - Cheaper

Images

L: www.fas.org/spp/starwars/program/sbl.htm

R: www.ball.com/aerospace/prod rs bus.html

PROGRAM INTRODUCTION

Applications: Space-Based Optics

Operational Need:
 Improve on glass & metal mirrors

Cheaper new processes

PROGRAM INTRODUCTION: Material Design Elements

Space compatible:

- Radiation hard (to space ambient)
- AO resistant (inherent or through practical coating)
- Resistant to out-gassing in vacuum

Improvement over glass or metal mirrors:

- Lower areal density
- Higher tolerance to thermal excursion (low CTE)
- Improved strength (toughness & stiffness)
- Compatible with obtaining optical surface

PROGRAM INTRODUCTION: Material Concept

Multi-Component Composites

PROGRAM INTRODUCTION

Applications: Space-Based Optics

Operational Need:
 Improve on glass & metal mirrors

Lighter
 Tougher
 Cheaper
 new materials
 new processes

PROGRAM INTRODUCTION: Replication Technology

PROGRAM INTRODUCTION: Replication Technology

PROGRAM INTRODUCTION: Thermoset Replica Concept

OVERVIEW

- Program Introduction
- Phase I Objectives
 - Phase I Results
 - Phase II Plan
 - Phase II Early Results
 - Phase II Enhancement
 - Summary

PHASE I OBJECTIVES

- 1. Formulate multi-component composites tailored for space-based mirrors
- 2. Develop fabrication process
- 3. Characterize candidate materials
- 4. Assess candidates' feasibility for space-based mirrors
- 5. Assess candidates' potential for mirror producibility

OVERVIEW

- Program Introduction
- Phase I Objectives
- Phase I Results
 - Phase II Plan
 - Phase II Early Results
 - Phase II Enhancement
 - Summary

PHASE I RESULTS: SialyteTM Inorganic "Resin"

$\begin{array}{c|c} O & O & O \\ \hline -Al & O - Si - O - Si - O - O \\ O & O & O \end{array}$

poly(sialate-siloxo)

Attributes

- Inherently space compatible
- Lattice structure: high stiffness
- Operating temp: to ~900 °C
 bridges gap between organic resin and ceramics
- Low-temp process: fabrication savings

Applications

- Space-based structures
- Propulsion components

CRG

PHASE I RESULTS:

Representative Inorganic Candidates

Cornerstone Research Group, Inc.

ZrO₂ Nanoparticle Composite

Carbon Nanofiber-Glass Syntactic Laminate

PHASE I RESULTS: SialyteTM Replica Mirror Coupon

Fabrication

- Sialyte[™] cast on optical flat
- Gold coating

Finish

- Porous surface
- Roughness:
 - Best local: ~5 nm RMS (neat)
 - Best overall: ~8 nm RMS
 (ZrO₂ composite)

PHASE I RESULTS: Organic Materials

Cyanate ester resin

- Demonstrated space compatible chemistry
- Compatible with mature processes demonstrated with epoxy-based materials
 - Streamlines composite design
 - Streamlines process development
- Formulation experience:
 Confidence in near term transition

PHASE I RESULTS: High-Performance Syntactic Composite

"Syntactic" = resin matrix + hollow microspheres

Attributes

- Low mass density: 0.55 g/cc
- High specific strength:126 MPa in compression
- Simple fabrication processes

Applications

- Lightweight structures
- Low dielectric structures
- High strength insulation

PHASE I RESULTS: High-Performance Syntactic Composite

New fabrication technique

- Eliminates voids & increases microsphere loading
- Improved material properties
 - Stronger
 - More uniform & more consistent

Conventional Process

CRG Process

PHASE I RESULTS: High-Performance Syntactic Composite

Advantages for space mirrors

Very high specific strength

Low density

PHASE I RESULTS: Representative Organic Candidates

Carbon Nanofiber Reinforcement

Syntactic-Carbon Fiber Laminate

PHASE I RESULTS: Cyanate Ester Surface Finish

PHASE I RESULTS: Mold Finish

UrxjkqhvvÆhiruhÆdwdj##
8174#qp #JP V

Urxjkqhvv#Diwhu#Fdvwlqj=## 7194#qp#JPV

PHASE I RESULTS: Cyanate Ester - Syntactic Mirror

OBJECTIVE

Demonstrate feasibility of replication approach

RESULTS

Form

Slight curvature (due to cure shrinkage)

Finish

- Good mold replication
- Good reflective coating

Fabrication

- Good mold release
- Process development needed to improve figure replication
- Initial feasibility established

PHASE I RESULTS: Cyanate Ester - Syntactic Mirror

Sta	tistics of Sur	face:	GK84-B		
Rp:	166.37nm	Rq:	5.15nm	Area:	1614.80x1229.80um
Rv:	-32.51nm	Ra:	3.29nm	Mag :	5.0
PV:	198.88nm	Rsk:	5.13	DATE:	09-05-2002
PT:	347168	Rku:	91.18	TIME:	15:18:39
Terms Subtracted: Tilt					

Vxuidfh#Jrxjkqhvv=## 8148#qp #JP V

PHASE I RESULTS: Summary

Sialyte[™] Inorganic Composites

- Multi-component composites feasible
- Attributes promising for space mirrors
- Need further development to reach transition

Cyanate Ester Organic Composites

- Multi-component composites feasible
- Attributes demonstrated for replica mirrors for space-based optics
- Ready for transition demonstration

OVERVIEW

- Program Introduction
- Phase I Objectives
- Phase I Results
- Phase II Plan
 - Phase II Early Results
 - Phase II Enhancement
 - Summary

PHASE II PLAN: Technical Objectives

- 1. Develop mature composite systems for replica mirrors (RM)
 - a. Organic materials
 - b. Inorganic materials
- 2. Develop mature fabrication processes for RM
- 3. Develop practical design methodology for RM
- 4. Demonstrate a prototype composite RM

PHASE II PLAN: Tasks in Progress

- Optimize organic composites for replica mirrors
 - Materials
 - Processing
- Optimize inorganic composites for replica mirrors
 - Materials
 - Processing
- Mirror development
 - Structural design
 - Composite cutting
 - Fabrication (assembly and bonding)
 - Reflective surface
- Characterize materials and mirrors

OVERVIEW

- Program Introduction
- Phase I Objectives
- Phase I Results
- Phase II Plan
- Phase II Early Results
 - Phase II Enhancement
 - Summary

PHASE II EARLY RESULTS: Inorganic Materials

Vfddqj#xs#surfhvvhv# #rswlp l}qj#frp srvlwhv

Applying Tomorrow's Materials Today

PHASE II EARLY RESULTS: Inorganic Materials

- Processing improvements
 - Better control and repeatability over Phase I manual techniques
 - Developing techniques for complex shapes

PHASE II EARLY RESULTS: Organic Materials

- Syntactic materials
 - Process improvement & scale-up on track
 - Thinner & more uniform sheets
 - Larger sheets
 - Enabling technology for new SynLam[™] material

PHASE II EARLY RESULTS: Organic Materials

- SynLamTM developed for mirror structure:
 Syntactic Laminate composite
 - Syntactic sandwich cores
 - Fiber-reinforced face sheets

SynLam[™] Advantages

- Lightweight
- Maximum operating temperature 200 °C
- 50% greater specific stiffness than conventional carbon fiber composite

	Specific Flexural Strength	Specific Stiffness
SynLam™	371 MPa (54 kpsi)	33 GPa (4786 kpsi)
Carbon Composite	362 MPa (52 kpsi)	22 GPa (3191 kpsi)

SynLamTM Scaled Up:

From hand lay-up to automation

- Cyanate ester resin: 0.5 m x 0.5 m x 0.5 cm

Epoxy resin: 0.9 m x 0.9 m x 0.5 cm

Cyanate Ester SynLam[™]

Ongoing process development:
 Complex SynLamTM Structures

- Ongoing process development:
 Quality Control
 - Current SynLam[™] Uniformity
 (1/3 m scale sheets):
 - Density ± 1%
 - Thickness ± 2%
 - Specific modulus ± 2%

Ongoing process development:
 Laser machining to cut SynLamTM

Design

Fabrication

FE Analysis

Coupon-Scale (8 cm across)

SynLamTM Structure

Areal Density = 3.2 kg/m^2

Early Mirror (Print Through)

Mirror w/Syntactic Buffer Layer

Cast Thermoset Replication

Mold with Release Coating

Mirror w/CE Resin Buffer Layer

Mirror on CE MWNT Composite

Symmetric Figure

Range (PV) = 1.6358 waves, RMS = 0.3501 waves, Strehl = 0.0079 Analysis Aper: Pos[306, 260] Size[57, 60]

Development Progressing Rapidly

- Current challenges
 - Improving optical surface
 - Interface between substrate and optical surface
 - Internal bonding of mirror structure (print-through issue)
 - Scale-up to prototype size

OVERVIEW

- Program Introduction
- Phase I Objectives
- Phase I Results
- Phase II Plan
- Phase II Early Results
- Phase II Enhancement
 - Summary

PROGRAM INTRODUCTION: Replication Technology

PHASE II ENHANCEMENT: Nanolaminate Replica Concept

PHASE II ENHANCEMENT: Approach

- Demonstrate Feasibility
 - Tailor materials for compatibility
 - Develop process for integrating lamina with structure
 - Evaluate thermal & optical performance
 - Quality of figure & finish at steady state
 - Stability during thermal cycling
- Demonstrate prototype replica mirror
 - 15 cm flat
 - Specular reflection
 - Cost-effective reusable tooling
- Effort commenced 15 June 2004

OVERVIEW

- Program Introduction
- Phase I Objectives
- Phase I Results
- Phase II Plan
- Phase II Early Results
- Phase II Enhancement
- Summary

PHASE II SUMMARY: Early Results

Sialyte[™] Inorganic Composites

- Appear promising for space mirrors
- Development progressing

Cyanate Ester Organic Composites

- SynLam[™] selected for structure
- Optimizing & scaling up

Replication Processes

- Thermoset approach progressing
- Nanolaminate approach pending

PHASE II SUMMARY

Composite Replica Mirrors for

Lightweight Space Optics

- Operational Benefits
 - Reduced mirror areal density
 - Tougher & stronger mirrors
 - Reduced fabrication time & cost
- Potential Air Force Applications
 - Space-based imaging systems
 - Space-based directed energy systems
- Potential Commercial Applications
 - Commercial imaging systems (e.g., LANDSAT)
 - Consumer telescopes

